PETUNJUK TEKNIS PROGRAM NASIONAL PEMANTAPAN MUTU EKSTERNAL KIMIA KESEHATAN

DIREKTORAT TAKEL PKP-INPULS PARAMETER PENGUJIAN AIR SIKLUS 1 TAHUN 2025

1. JADWAL

No	Kegiatan	Jadwal
1	Pembukaan Pendaftaran	12 Januari 2025
2	Batas akhir pendaftaran	02 Maret 2025
3	Pendistribusian Bahan Uji	23-24 April 2025
		5 Mei 2024
4	Pemeriksaan Serentak	(Khusus Bahan UP Mikrobiologi
		segera
		dilakukan pemeriksaan)
5	Batas Akhir Penerimaan	19 Mei 2025
	Jawaban	
6	Feedback	24 Juni 2025

2. APLIKASI PME ONLINE

Peserta dapat mengakses/mengunduh menu:

- a. Pendaftaran
- b. Unggah Bukti Pembayaran
- c. Verifikasi Bukti Pembayaran
- d. Distribusi Bahan Uji
- e. Tanda Terima Bahan Uji
- f. Pemeriksaan dan Entry Hasil
- g. Informasi Entry Hasil Terkirim
- h. Survey Kepuasan Pelanggan 1
- i. Hasil Evaluasi
- j. Laporan Evaluasi
- k. Juknis per bidang pemeriksaan
- I. Skema

3. RUANG LINGKUP

Ruang lingkup penerapan dokumen petunjuk teknis tahap 1 ini untuk :

- Matrik Air Minum (AM) dengan parameter Logam (Fe, Mn, Cd, Pb, Al, Cu), Anion (F) dan Kekeruhan
- 2. Matrik Air Hiegene (AH) dengan parameter Logam (Fe, Mn, Cu, Zn), Anion (NO3), dan Kekeruhan.

4. PETUNJUK TEKNIS PELAKSANAAN

Untuk menjamin agar hasil uji yang dilaporkan dapat diolah dengan baik, Laboratorium Peserta Uji dimohon untuk memperhatikan hal – hal sebagai berikut :

a. Kode Laboratorium

- 1. Masing masing peserta mendapat sampel PNPME sebanyak 3 tabung untuk matrik air minum dan 3 tabung untuk matrik air hiegene
- Setiap tabung sample PNPME dicantumkan kode atau identitas masing masing.
 Kode Laboratorium yang spesifik dan dijaga kerahasiaannya oleh Penyelenggara uji profisinesi (PNPME)

Contoh Kode AM.01.25.1; AL.01.25.1; AH.01.25.1

b. Sampel PNPME

- 1. Sampel PNPME yang digunakan adalah Air Minum (AM), Air Higiene (AH) serta
- 2. Sampel PNPME dikemas dalam tabung ulir gelas bertutup Teflon
- 3. Setiap peserta yang mendaftar lengkap akan mendapatkan 6 (enam) tabung Sampel PNPME dengan kode tabung ulir yang berbeda-beda tiap peserta, dan info jumlah tabung ulir jika keikutsertaan lengkap adalah sebagai berikut:

Air Minum			
Keterangan Pada tabung Ulir	ml Sampel	Jumlah Tabung Ulir	
Logam (Fe, Mn, Cd, Pb, Al, Cu)	10	1	
Anion (F)	10	1	
Kekeruhan	10	1	
Air Higiene			
Keterangan Pada tabung Ulir	ml Sampel	Jumlah Tabung Ulir	
Logam (Fe, Mn, Cu, Zn)	10	1	

Anion (NO3)	10	1
Kekeruhan	10	1

- 4. Setelah Sampel Uji diterima di laboratorium peserta, segera buka kemasan luar, kemudian periksa dengan cermat kondisi sampel pada saat diterima (rekam video bila diperlukan)
- 5. Catat tanggal penerimaan dan kondisi sampel saat di terima
- 6. Sampel yang telah diterima dapat disimpan disuhu kamar

c. Pengujian Sampel PNPME

- Parameter uji untuk matrik air minum adalah Logam terlarut (Fe, Mn, Cd, Pb, Al, Cu), Flourida dan Kekeruhan,untuk Air Higiene adalah Logam terlarut (Fe, Mn, Cu, Zn) Nitrat dan Kekeruhan
- Pengujian dilakukan sesuai dengan jadwal yang telah ditetapkan yaitu Tanggal;
 Mei 2025
- 3. Sebelum dilakukan analisis, Sampel PNPME diberi perlakukan pengenceran terlebih dahulu, petunjuk setiap sampel uji ditetapkan sebagai berikut :

No	Parameter	Petunjuk Pengenceran
1	Logam Air Minum	1 ml konsentrat dalam labu 100 ml,
		tepatkan dengan air suling sampai batas
		tera
3	Logam Air Higiene	1 ml konsentrat dalam labu 100 ml,
		tepatkan dengan air suling sampai batas
		tera
4	Flourida Air Minum	1 ml konsentrat dalam labu 100 ml,
		tepatkan dengan air suling sampai batas
		tera
5	Kekeruhan Air Minum	1 ml konsentrat dalam labu 100 ml,
		tepatkan dengan air suling sampai batas
		tera
7	NO₃ Air Hiegene	1 ml konsentrat dalam labu 100 ml,
	_	tepatkan dengan air suling sampai batas
		tera
9	Kekeruhan Air Hiegene	1 ml konsentrat dalam labu 100 ml,
		tepatkan dengan air suling sampai batas
		tera

- 4. Selanjutnya analisis dilakukan oleh laboratorium peserta dengan menggunakan metode uji yang digunakan secara rutin pada laboratorium masing-masing.
- 5. Informasi nilai rentang konsentrasi pengujian yang ditetapkan sebagai berikut :

Air Minum			
No	Paremeter	Rentang	Satuan
		Konsentrasi	
1	Fe (terlarut)	0.05 - 0.500	mg/L
2	Mn (terlarut)	0.05 - 0.500	mg/L
3	Cd (terlarut)	0.05 - 0.500	mg/L
4	Pb (terlarut)	0.05 - 0.500	mg/L
5	Al (terlarut)	0.100 - 0.500	mg/L
0	Cu (terlarut)	0.100 - 1.000	mg/L
7	F	0.100 - 1.000	mg/L
8	Kekeruhan	1.000 - 5.000	NTU
	Air	Higiene	
No	Paremeter	Rentang	Satuan
		Konsentrasi	
1	Fe (terlarut)	0.100 - 0.500	mg/L
2	Mn (terlarut)	0.100 - 1.000	mg/L
3	Cu (terlarut)	0.100 - 1.000	mg/L
4	Zn (terlarut)	0.100 - 1.000	mg/L
5	Anion (NO3)	1.000 - 5.000	mg/L
6	Kekeruhan	1.000 - 5.000	NTU

d. 1.Pelaporan Hasil Pengujian

- Laboratorium peserta diharuskan melaporkan data hasil pengujian dan menyertakan **estimasi ketidakpastiannya** (jika memungkinkan) dengan mengikuti format pengisian hasil pada aplikasi.
- Pastikan untuk memeriksa hasil pengujian sebelum laboratorium peserta mengirimkan hasil ke aplikasi, termasuk kode laboratorium yang ada pada kemasan Objek uji.
- Pastikan untuk melampirkan semua bukti dokumen pengujian. (di upload diaplikasi)

Hasil Pengujian TIDAK DIKALIKAN dengan nilai pengenceran

- Aturan pelaporan hasil pengujian sebagai berikut:
 - Semua data parameter hasil pengujian AB dilaporkan mengikuti aturan 3 angka di belakang koma dalam satuan sesuai yang tertera di FR.PUP.KT.001/Rev.0/30.03.17.
 - 2. Pembulatan angka desimal hasil pengujian diharapkan mengikuti aturan sebagai berikut:
 - a. Jika diperoleh angka desimal kurang dari 5 (lima) maka pembulatan turun,
 - tapi jika lebih dari 5 (lima) pembulatan naik.

Contoh: 14.5554 dibulatkan menjadi 14,555

14.6766 dibulatkan menjadi 14.677

b. Jika diperoleh angka desimal 5 (lima) yang akan dibulatkan dari angka genap yang ada di depannya, maka angka 5 (lima) tersebut menjadi hilang, tetapi bila angka di depannya ganjil maka pembulatan akan naik.

Contoh: 14.4665 dibulatkan menjadi 14.466

14.6775 dibulatkan menjadi 14.678

5. Pengisian Tanda Terima Objek Uji Profesiensi

- a. Klik Isi tanda terima bahan pada menu dashboard peserta PME
- b. Input nama Personil, Tanggal, Jam Pemerimaan, jabatan dan No Telp Personil
- c. Input Jumlah bahan yang diterima
- d. Input kondisi bahan yang diterima (pilih option)
- e. Isi Keterangan bila diperlukan
- f. Simpan, klik kembali ke dashboard

6. Rancangan Statistika Pengolahan Data

1.	Penilaian Laboratorium
	Penilaian terhadap unjuk kerja laboratorium menggunakan z-score dengan tiga
	kriteria penilaian sebagai berikut:
	□ Untuk z-score ≤2,0 dikategorikan memuaskan dan diberi lambang OK
	☐ Untuk 2,0< z-score <3,0 dikategorikan peringatan dan diberi lambang \$
	□ Untuk z-score ≥3,0 dikategorikan kurang memuaskan dan diberi lambang \$\$
2.	Penetapan nilai evaluasi uji Profisiensi (assigned value) dirancang menggunakan skema Robust statistic Algorithm A sesuai ISO 13528 ; 2022
3.	Penetapan SDPA (standar deviasi yang digunakan dalam evaluasi) dirancang menggunakan skema sebagai berikut:
	□ Simpangan baku Horwitz (Horwitz Function) Simpangan baku yang ditetapkan (assigned SDPA)
	Oli i paridari pard valid diletaprali tassidiled SDI 🗥 i

$$SDPA = \frac{\overline{x} Algorithm A x CV Horwitz}{100}$$

4. Penetapan z Score : $z = \frac{xa - \bar{x}}{SDPA}$

7. Entry Hasil Ke Aplikasi PME Online

Isilah hasil pemeriksaan pada Aplikasi hasil pemeriksaan seperti dibawah ini :

- a. Pilih tanggal pemeriksaan bahan uji.
- b. Perhatikan Formulir hasil untuk setiap tabung
- c. Ketik Hasil Pengujian, Ketidakpastian (bila mungkin), Alat dan Metode Pemeriksaan.
- d. Tuliskan nama pemeriksa dan penanggung jawab laboratorium.
- e. Teliti kembali apakah formulir hasil sudah diisi dengan lengkap dan benar sesuai petunjuk diatas, kemudian klik tombol "simpan" lalu klik "unduh" untuk preview atau arsip jika suatu saat dibutuhkan.
- f. Klik Tombol "kirim" untuk mengirim isian peserta.

8. EVALUASI

Dilakukan oleh Balai Besar Laboratorium Kesehatan Masyarakat Palembang.

9. KERAHASIAN

Untuk menjamin kerahasiaan, setiap peserta PME memiliki akun yang tidak diketahui oleh peserta lain.

10. FEED BACK

Hasil evaluasi akan dirahasiakan dan hanya disampaikan ke Unit Saudara. Laporan hasil kegiatan PME disampaikan ke Direktorat Fasilitas dan mutu pelayanan Kesehatan Primer dan Dinas Kesehatan masing-masing Provinsi yang akan digunakan sebagai data untuk peningkatan kinerja Pengujian Sampel Air di Laboratorium.

- Apabila Saudara memerlukan konfirmasi dalam pelaksanaan PME ini dapat menghubungi:

Rahmi Widiawati, SKM, M.Biomed : HP 08127349068
Citra Wulandari, SKM, M.Biomed : HP 081373535481

Balai Besar Laboratorium Keseha	Palembang, Januari 2025 atan Masyarakat Palembang